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Arrested cracks in nonlinear lattice models of brittle fracture
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We generalize lattice models of brittle fracture to arbitrary nonlinear force laws and study the existence of
arrested semi-infinite cracks. Unlike what is seen in the discontinuous case studied to date, the range in driving
displacement for which these arrested cracks exist is very small. Also, our results indicate that small changes
in the vicinity of the crack tip can have an extremely large effect on arrested cracks. Finally, we briefly discuss
the possible relevance of our findings to recent experiments.@S1063-651X~99!10212-5#

PACS number~s!: 62.20.Mk, 46.50.1a
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Recent years have seen a rebirth of interest among
physics community in the issue of dynamic fracture. This
due to a variety of new experimental results which are
explainable within the confines of the traditional engineer
approach to fracture@1#. These results include a dynamic
instability to microbranching@2,3#, the formation of non-
smooth fracture surfaces@4#, and the rapid variation of the
fracture energy~including dissipative losses incurred durin
cleavage! with crack velocity@5#. These issues are reviewe
in a recent paper by Fineberg and Marder@6#. This renewed
interest serves as motivation for us to introduce a new c
of lattice models for fracture; eventually, we hope that t
tractability of our models, as shown below for the simp
problem of lattice pinning, will lead to insight into all o
these issues.

One approach for dealing with dynamic fracture involv
restricting the atomic interactions to those occurring betw
neighboring sites of an originally unstrained lattice. The
lattice models can never be as realistic as full molecu
dynamics simulations, but compensate for this shortcom
by being much more amenable to analysis, both numer
and ~via the Wiener-Hopf technique! otherwise. This ap-
proach was pioneered by Slepyan and co-workers@7# and
further developed by Marder and Gross@8# and most recently
by us @9#. Most of the results to date have been obtain
using a simplified force law which is linear until som
threshold displacement, at which point it drops abruptly
zero. Below, we will study a generalization for which th
force is a smooth function of the lattice strain. One of o
goals is to learn which aspects of fracture are sensitive
microscopic details and which are universal.

One interesting aspect of these lattice models concerns
existence of a range of driving displacementsD for which
nonmoving semi-infinite crack solutions can be found. F
the aforementioned discontinuous force model, there exis
wide range of these arrested cracks. For example, Ref@9#
found thatD could range from 40% below to 40% above t
Griffith displacementDG , the driving at which it first be-
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comes energetically favorable for the system to crack. T
phenomenon is connected to the existence of a velocity g
i.e., a minimal velocity for stable crack propagation. Expe
mentally, no such gap has been reported, even for mate
such as single-crystal silicon@10#, which should be at leas
approximately describable by lattice models. It is therefo
of some interest to study how the arrested crack range
pends on the microscopic details of the assumed atomic f
law. Here we present the results of such a study, includ
the finding that this range drops rapidly towards zero as
force law is made smoother and hence more realistic.

As in Ref. @9#, we work with a square lattice and wit
scalar displacements~mode III!. We focus on arrested crack
and write the static equation as

052 f ~ui 11,j2ui , j !1 f ~ui , j2ui 21,j !2 f ~ui , j 112ui , j !

1 f ~ui , j2ui , j 21!. ~1!

Here the indices$ i , j % label the lattice site andu is the dis-
placement. Sites in the last row of the lattice,j 5Ny , are
coupled to a row with fixed displacementD. The first row,
j 51, is coupled to aj 50 displacement fieldui ,0 which via
symmetry equals2ui ,1 . Finally, f is a nonlinear function of
its argument, the lattice strain. We investigate two for
@11#:

f e~u!52u
11tanh@a~12u!#

11tanha
, ~2!

f p~u!52
uaa11

~u1a!a11
. ~3!

For both of these forms, increasinga reduces the length
scale over whichf falls to zero once outside Hooke’s law
regime (u,1). The exponential forcef e reduces to the fa-
miliar discontinuous force~linear until complete failure! as
a→`.

Our procedure for finding solutions is in principl
straightforward. At large positivei in the uncracked material
we know that the system will adopt a uniformly straine
state. Conversely, at large negativei the cracked state will

at
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have a large displacementui ,1 and ~almost! zero strains for
j .1. Fixing the boundary conditionD allows us to easily
find these asymptotic states. Once found, these solutions
used as fixed displacements for the columnsi 5Nx11 and
i 52Nx21, respectively. The arrested crack then requi
us to solve for (2Nx11)Ny variables. We impose the equa
tion at motion at all sites except for the crack ‘‘tip’’ (i
50,j 51), where instead we specify the displacement; t
approach preserves the banded structure of the system. N
ton’s algorithm then allows us to converge to a solutio
Afterwards, the residual equation of motion becomes a s
ability condition with whichD can be determined. The rang
of allowed values ofD for arrested cracks is found as on
systematically sweeps through the value of the aforem
tioned fixed displacement.

In Fig. 1 we present our results for the exponential mod
For illustration, we have chosen to show data forNy510 as
a function ofa. For largea, the range ofD is large and
there is a marked asymmetry between the rising segmen
D versus imposed displacement and the~much steeper! fall-
ing segment. Asa→`, the falling portion becomes vertica
These segments represent different crack solutions at fi
D; asD reaches the end of its allowed range, these solu
branches collide and disappear in a standard saddle-nod
furcation point. To verify this, we have performed@12# a
linear stability calculation of these solutions, assum
purely inertial dynamics@i.e., setting the left-hand side of Eq
~1! to üi , j #. As expected, there is a single mode of the sp
trum for the growth ratev for which v2 goes from negative
to positive as we go up the rising segment, reach the m
mal driving, and then go back down.

Figure 1 demonstrates that as the potential is m
smoother, the range of arrested cracks shrinks dramatic
In Fig. 2, we show this range as a percentage ofDG . The
best fit to our data suggests that the range vanishes a
essentially singular function ofa,

Dmax2Dmin

DG
;A exp2

a0

a
, ~4!

FIG. 1. D vs imposedu0,1 ~dimensionless! displacement for dif-
ferent values ofa in f e . All data haveNy510 andNx5100.
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where forNy510, a0.6.6 and otherwise is a slowly vary
ing function ofNy as long as the system is sufficiently larg
compared to the potential fall-off.

Let us now turn to the power-law form. Based on o
findings above, we would expect that this rather smo
force law would give rise to a range which is practica
zero. We have verified this prediction in two ways. First, f
the casea53 we performed our usual scan over impos
u0,1 displacement and noted that the selectedD varies by less
than 1026. Second, we computed the stability spectrum a
found a mode atv2,1026; this value is indicative of how
close we are at a randomly chosen displacement to the
tremal value ofD at the saddle-node bifurcation . Thes
numbers are consistent with our numerical accuracy
hence the true range is probably even smaller. Needles
say, ranges of this size would be unmeasurable. It is in
esting to point out that the almost-zero mode is nothing ot

FIG. 3. Dimesionless strainui 11,12ui ,1 for three different po-
tentials. Data are forNy540, Nx5200 and are normalized to th
respectiveD values. The power-law curve has been shifted t
sites to the left so as to better match the field at large positivei.

FIG. 2. Arrested crack range normalized by the Griffith d
placementDG vs a in f e ; again all data are forNy510, Nx

5100.
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than a spatial translation of the crack. That is, translating
crack with respect to the underlying fixed lattice is almos
symmetry of the solution.

So, by making the potential smoother one tends to eli
nate arrested crack solutions. How does this change c
about? To try to address this question, we plot in Fig. 3
lattice strain fieldui 11,12ui ,1 for 2Nx< i<Nx for the three
potentials, exponential witha55 ~exp 5! or 2 ~exp 2! and
power-law witha53 ~pow 3!. For this comparison, we hav
found ~stable! solutions withu0,150.75 for all three poten-
tials, and then normalized the strains by dividing with t
respective values ofD. First, we note that beyondx.5, the
different cases are virtually indistinguishable and all lie
the expectedx21/2 universal curve @1,9#. The interior
‘‘process-zone’’ region is affected by changing the potent
but rather minimally. For example, the two exponential ca
differ in only one or two points, yet this is sufficient to shrin
the arrested crack range by almost an order of magnitu
The power-law choice has a process zone which is a
wider and there is less maximal strain, but that is all. W
thus conclude that the existence and size of the arrested c
range are extremely sensitive to microscopic details. We n
in passing that the process zone for any specific poten
quickly reaches an asymptotic size onceNy is sufficiently
large and in particular does not increase indefinitely in
macroscopic limit. Treatments@13,14# which include a
y
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mesoscopic-size ‘‘cohesive-zone’’ are therefore not accu
representations of this class of lattice models.

In a recent experiment@10# on fracture in silicon, no ar-
rested cracks were observed. A molecular-dynamics sim
tion using a modified Stillinger-Weber potential also exh
ited no arrested cracks when studied at high eno
temperature. However, the potentials used here were ra
short-ranged, as compared with some estimates that a
from density-functional theory@15#. Our results indicate tha
increasing the range and thereby using smoother poten
will eliminate ~at least as far as experimentally attainab
precision occurs! arrested cracks and may offer a simpl
explanation of the experimental finding than one which
quires thermal creep. This could of course be tested in p
ciple by redoing the experiments at a reduced temperatu
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