PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Arrested cracks in nonlinear lattice models of brittle fracture
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We generalize lattice models of brittle fracture to arbitrary nonlinear force laws and study the existence of
arrested semi-infinite cracks. Unlike what is seen in the discontinuous case studied to date, the range in driving
displacement for which these arrested cracks exist is very small. Also, our results indicate that small changes
in the vicinity of the crack tip can have an extremely large effect on arrested cracks. Finally, we briefly discuss
the possible relevance of our findings to recent experim¢8i63-651X99)10212-5

PACS numbd(s): 62.20.Mk, 46.50+a

Recent years have seen a rebirth of interest among theomes energetically favorable for the system to crack. This
physics community in the issue of dynamic fracture. This isphenomenon is connected to the existence of a velocity gap,
due to a variety of new experimental results which are noi.e., a minimal velocity for stable crack propagation. Experi-
explainable within the confines of the traditional engineeringmentally, no such gap has been reported, even for materials
approach to fracturgl]. These results include a dynamical such as single-crystal silicdi0], which should be at least
instability to microbranchind2,3], the formation of non- approximately describable by lattice models. It is therefore
smooth fracture surfacdg], and the rapid variation of the Of some interest to study how the arrested crack range de-
fracture energyincluding dissipative losses incurred during Pends on the microscopic details of the assumed atomic force
cleavage with crack velocity[5]. These issues are reviewed law. Here we present the results of such a study, including
in a recent paper by Fineberg and Marfi@}. This renewed the finding that this range drops rapidly towards zero as the
interest serves as motivation for us to introduce a new clas®rce law is made smoother and hence more realistic.
of lattice models for fracture; eventually, we hope that the As in Ref.[9], we work with a square lattice and with
tractability of our models, as shown below for the simplerscalar displacementsode Ill). We focus on arrested cracks
problem of lattice pinning, will lead to insight into all of and write the static equation as
these issues.

One approach for dealing with dynamic fracture involves 0= ~ F(Uisj= Ui )+ (Ui j= Ui g ) = fF(Uj j 1 =i j)
restricting the atomic interactions to those occurring between FF(U—u ). 1)
neighboring sites of an originally unstrained lattice. These Jo
lattice models can never be as realistic as full molecularere the indicegi,j} label the lattice site and is the dis-

dynamics simulations, but compensate for this shortcomingacement. Sites in the last row of the latties Ny, are
by being much more amenable to analysis, both numericaloupled to a row with fixed displacement The first row,
and (via the Wiener-Hopf techniqyeotherwise. This ap- j=1 is coupled to 4=0 displacement field; , which via
proach was pioneered by Slepyan and co-work&isand  symmetry equals-u; ;. Finally, f is a nonlinear function of

further developed by Marder and Grd&g and most recently  jis argument, the lattice strain. We investigate two forms
by us[9]. Most of the results to date have been obtained 1],

using a simplified force law which is linear until some

threshold displacement, at which point it drops abruptly to 1+tanf a(1—u)]

zero. Below, we will study a generalization for which the fe(U)=—u—"F 2

force is a smooth function of the lattice strain. One of our

goals is to learn which aspects of fracture are sensitive to ol

microscopic details and which are universal. f(u)=— ua _ 3)
One interesting aspect of these lattice models concerns the . (u+a)**tt

existence of a range of driving displacementsor which
nonmoving semi-infinite crack solutions can be found. ForFor both of these forms, increasing reduces the length
the aforementioned discontinuous force model, there exists scale over whiclf falls to zero once outside Hooke's law
wide range of these arrested cracks. For example, [Réf. regime (U<1). The exponential forcé, reduces to the fa-
found thatA could range from 40% below to 40% above the miliar discontinuous forcelinear until complete failureas
Griffith displacementAg, the driving at which it first be- a—oo.
Our procedure for finding solutions is in principle
straightforward. At large positivein the uncracked material,
*Permanent address: Dept. of Physics, Bar-llan University, Ramave know that the system will adopt a uniformly strained
Gan, Israel. state. Conversely, at large negativéhe cracked state will
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FIG. 1. A vs imposedi, , (dimensionlessdisplacement for dif- FIG. 2. Arrested _crack range normalized by the Griffith dis-
ferent values ofx in f.. All data haveN,=10 andN,=100. plic(:)%mentAG vs a in f¢; again all data are foN,=10, N,

have a large displacemenf; and (almos} zero strains for o
j>1. Fixing the boundary conditiod allows us to easily Where forNy=10, @;=6.6 and otherwise is a slowly vary-
find these asymptotic states. Once found, these solutions affd function ofN as long as the system is sufficiently large
used as fixed displacements for the columneN,+1 and ~ Compared to the potential fall-off.

i=—N,—1, respectively. The arrested crack then requires, -t US now tum to the power-law form. Based on our
us to solve for (N,+1)N, variables. We impose the equa- findings above, we would expect that this rather smooth
tion at motion at all sites except for the crack “tip’i ( force law would give rise to a range which is practically

—0,=1), where instead we specify the displacement; thiZe"°- We have verified this prediction in two ways. First, for

approach preserves the banded structure of the system. Nef{l¢ caséx=3 we performed our usual scan over imposed

ton’s algorithm then allows us to converge to a solution.Uo. displacement and noted that the selediecaries by less

S o
Afterwards, the residual equation of motion becomes a solvtan 10°. Second, we computed the stability spectrum and

2_ 106 thi S
ability condition with whichA can be determined. The range found a mode at®<10"°; this value is indicative of how
of allowed values ofA for arrested cracks is found as one €/0S€ We are at a randomly chosen displacement to the ex-

systematically sweeps through the value of the aforemerff€mal value ofA at the saddle-node bifurcation . These
tioned fixed displacement. numbers are consistent with our numerical accuracy and

In Fig. 1 we present our results for the exponential modelnence the true range is probably even smaller. Needless to

For illustration, we have chosen to show datage=10 as say, ranges of this size would be unmeasurable. It is inter-
a function Ofa,. For largea, the range ofA is large and esting to point out that the almost-zero mode is nothing other

there is a marked asymmetry between the rising segment of

A versus imposed displacement and ¢(hich steeperfall- 0.12 ' -

ing segment. Asr— o, the falling portion becomes vertical. exp5
These segments represent different crack solutions at fixee | 4 . exp2
A; asA reaches the end of its allowed range, these solution ---- pow3

branches collide and disappear in a standard saddle-node b
furcation point. To verify this, we have performéd2] a
linear stability calculation of these solutions, assuming
purely inertial dynamicsi.e., setting the left-hand side of Eq.

(1) to iji,j]. As expected, there is a single mode of the spec-
trum for the growth rate» for which w? goes from negative 0.04
to positive as we go up the rising segment, reach the maxi-
mal driving, and then go back down.

Figure 1 demonstrates that as the potential is made
smoother, the range of arrested cracks shrinks dramatically
In Fig. 2, we show this range as a percentagé\gf. The 0.00 s .
best fit to our data suggests that the range vanishes as ¢ -10.0 0.0 10.0 20.0
essentially singular function af, X

0.08 -

strain

FIG. 3. Dimesionless strain;; ;—u; ; for three different po-
tentials. Data are foN,=40, N,=200 and are normalized to the
-0 (4) respectiveA values. The power-law curve has been shifted two
a sites to the left so as to better match the field at large positive
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than a spatial translation of the crack. That is, translating thenesoscopic-size “cohesive-zone” are therefore not accurate
crack with respect to the underlying fixed lattice is almost arepresentations of this class of lattice models.
symmetry of the solution. In a recent experimeritL0] on fracture in silicon, no ar-

So, by making the potential smoother one tends to elimifested cracks were observed. A molecular-dynamics simula-
nate arrested crack solutions. How does this change conf#®n using a modified Stillinger-Weber potential also exhib-
about? To try to address this question, we plot in Fig. 3 thdted no arrested cracks when studied at high enough
lattice strain fieldu; . ; ;— U; ; for —N,<i<N, for the three  témperature. However, the potentials used here were rather
potentials, exponentiél witle=5 (exp9 or 2 (exp2 and short-rang_ed, as _compared with some estimates that arise
power-law witha =3 (pow 3. For this comparison, we have from density-functional theor15]. Our results indicate that
found (stable solutions withug ;=0.75 for all three poten- Increasing the range and thereby using smoother pqtentlals
tials, and then normalized the strains by dividing with theWIII gl!m|nate (at least as far as experimentally atta}mable
respective values of. First, we note that beyonx=5, the precision occunsarresteo! cracks _an(_j may offer a S|_mpler
different cases are virtually indistinguishable and all lie Onexplanatlon of the exper_|mental finding than one Wh'.Ch re-
the expectedx Y2 universal curve[1,9]. The interior quires thermgl creep. Th|s_ could of course be tested in prin-
“process-zone” region is affected by changing the potentiaI,C'ple by redoing the experiments at a reduced temperature.
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